
On coalescence of fermions on Riemann surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 5919

(http://iopscience.iop.org/0305-4470/33/33/310)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/33
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 5919–5924. Printed in the UK PII: S0305-4470(00)13787-4

On coalescence of fermions on Riemann surfaces

Matthias Schork
FB Mathematik, J W Goethe-Universität, 60054 Frankfurt, Germany

E-mail: schork@math.uni-frankfurt.de

Received 5 May 2000

Abstract. We consider coalescing fermions on a Riemann surface and derive generalized
determinant formulae, complementing some results of Constantinescu (1995 Lett. Math. Phys. 33
195–206). Possible applications are indicated.

1. Introduction

Recall [1] that the 2N -point function 〈∏N
i=1 b(zi)

∏N
i=1 c(yi)〉 for the fermionic fields b, c on the

Riemann sphere (i.e. Riemann surface of genus g = 0) is determined by the operator product
expansions to

∏
i<j (zi − zj )

∏
i<j (yj − yi)

∏N
i,j=1(zi − yj )

−1. Since the bc-system is a free

system we may also use Wick’s theorem to obtain det( 1
zi−yj

)Ni,j=1, where 〈b(z)c(y)〉 = 1
z−y

.
Comparing the two expressions gives the Cauchy identity∏

i<j (zi − zj )
∏

i<j (yj − yi)∏N
i,j=1(zi − yj )

= det

(
1

zi − yj

)N
i,j=1

. (1)

What happens when two (or more) fields coalesce, e.g. zi → zj , was considered in [2, 3].
Considering the fields b, c as being charged (with opposite charge), this means that one wants
to consider multiply charged fields where the entire system remains neutral; the limit zi → wj

corresponds to the insertion of a current j (z) = − : b(z)c(z): in wj . In contrast to the
case of the current where one has to extract the nonsingular terms, one has here to extract the
nonvanishing terms in (1) carefully [3], obtaining so-called generalized Cauchy determinants.
In the case N = 2 and z2 → z1 one obtains the identity

(y2 − y1)

(z1 − y1)2(z1 − y2)2
=

∣∣∣∣
1

z1−y1

1
z1−y2

1
(z1−y1)2

1
(z1−y2)2

∣∣∣∣ . (2)

Note that if we furthermore consider y2 → y1 (corresponding to a system of two doubly
charged fermions of opposite sign), we obtain

1

(z1 − y1)4
=

∣∣∣∣
1

z1−y1

1
(z1−y1)2

1
(z1−y1)2

2
(z1−y1)3

∣∣∣∣ . (3)

The authors of [2] suggested considering the same situation in a higher genus; this is what we
begin here. In the second section we recall very briefly the necessary facts of the bc-system in
a higher genus, before we determine in the third section the determinant formulae. We indicate
some possible applications in the last section.
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2. The bc-system

Let �g be a Riemann surface of genus g and K its canonical bundle. The field b is a section
of Kλ with λ ∈ 1

2 Z, so c is a section of K1−λ; more generally, we could consider twisted
fermions where b is a section of a line bundle of degree 2λ(g− 1). For half-integer λ we have
to choose a theta-characteristic α with α2 � K . We want to consider again the neutral case
(the case where no zero modes exist), so that we have to choose by Riemann–Roch λ = 1

2 .
For an even theta-characteristic there will be (generically) no zero modes, so this is the case
we study. The two-point function for g � 2 is given by 〈b(z)c(y)〉 = ϑ[α](z−y)

ϑ[α](0)E(z,y) ≡ Sα(z, y)

(see e.g. [4,5]). Here we have used the prime form, which is a − 1
2 -form in each argument and

behaves like E(z, y) ∼ z − y for z, y close and the theta-function ϑ[α] corresponding to the
chosen theta-characteristic α. Considering the four-point function in the two different ways
yields Fay’s trisecant identity [5, 6]:

ϑ[α](z1 + z2 − y1 − y2)E(z1, z2)E(y2, y1)

ϑ[α](0)E(z1, y1)E(z1, y2)E(z2, y1)E(z2, y2)
=

∣∣∣∣ Sα(z1, y1) Sα(z1, y2)

Sα(z2, y1) Sα(z2, y2)

∣∣∣∣ . (4)

In the case g = 1 we obtain an identity of Frobenius [7]:

σ(z1 + z2 + w1 + w2 + α)σ(α)σ (z1 − z2)σ (w1 − w2)

σ (z1 + w1)σ (z1 + w2)σ (z2 + w1)σ (z2 + w2)
= det

(
σ(zi + wj + α)

σ(zi + wj)

)2

i,j=1

. (5)

Here we have used the Weierstraß function σ which is closely related to the theta-function ϑ1;
cf [8, 9]. For the applications we have to set wi = −yi .

3. A calculation

We will first consider the case of the four-point function in genus g = 1. Let z2 = z1 +ε; using
σ(−ε) = −σ(ε) and σ(ε) ∼ ε for small ε, we obtain for 1

ε
times the left-hand side of (5) in

the limit ε → 0 the expression (recall that wi = −yi)

σ(α)σ (2z1 − y1 − y2 + α)
σ(y1 − y2)

σ (z1 − y1)2σ(z1 − y2)2
. (6)

Expanding furthermore y2 = y1 + δ, we obtain for δ−1· (6) in the limit δ → 0

−σ(α)
σ (2z1 − 2y1 + α)

σ(z1 − y1)4
.

Let us now consider the right-hand side of (5). To shorten the notation, we introduce

Qα(zi, yj ) := σ(zi − yj + α)

σ(zi − yj )
.

Denoting the derivative of Qα with respect to the first (second) argument by Dz (Dy), we
obtain for z2 = z1 + ε → z1 and y2 = y1 + δ → y1 the expansions

Qα(z2, yi) = Qα(z1, yi) + ε · DzQα(z1, yi) + O(ε2)

Qα(z1, y2) = Qα(z1, y1) + δ · DyQα(z1, y1) + O(δ2).

Expanding the right-hand side of (5) in ε yields as the term of first order

ε ·
∣∣∣∣ Qα(z1, y1) Qα(z1, y2)

DzQα(z1, y1) DzQα(z1, y2)

∣∣∣∣ ≡ ε ·
∣∣∣∣

σ(z1−y1+α)
σ(z1−y1)

σ (z1−y2+α)
σ(z1−y2)

Dz
σ(z1−y1+α)
σ(z1−y1)

Dz
σ(z1−y2+α)
σ(z1−y2)

∣∣∣∣ . (7)

Now, we consider y2 = y1 + δ → y1. Clearly, an analogous expansion will give us to first
order in δ

εδ ·
∣∣∣∣ Qα(z1, y1) DyQα(z1, y1)

DzQα(z1, y1) DyDzQα(z1, y1)

∣∣∣∣ ≡ εδ ·
∣∣∣∣

σ(z1−y1+α)
σ(z1−y1)

Dy
σ(z1−y1+α)
σ(z1−y1)

Dz
σ(z1−y1+α)
σ(z1−y1)

DyDz
σ(z1−y1+α)
σ(z1−y1)

∣∣∣∣ . (8)
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It remains to calculate the derivatives as explicitly as possible. Let

ψα(zi, yj ) := σ ′

σ
(zi − yj + α) ψ(zi, yj ) := σ ′

σ
(zi − yj ) � := ψα − ψ. (9)

Expanding the functionQα(z2, yi) for z2 = z1+ε and using that a+bε+O(ε2)

c+dε+O(ε2)
= a

c
+ bc−ad

c2 ε+O(ε2),

we obtain Qα(z2, yi) = Qα(z1, yi) + Qα(z1, yi) · (ψα(z1, yi) − ψ(z1, yi)) · ε + O(ε2), thus
identifying

DzQα(z1, yi) = Qα(z1, yi) · (ψα(z1, yi) − ψ(z1, yi)) = Qα(z1, yi) · �(z1, yi). (10)

In a similar fashion (using this time that a−bε+O(ε2)

c−dε+O(ε2)
= a

c
− bc−ad

c2 ε + O(ε2)) one obtains

DyQα(z1, yi) = −Qα(z1, yi) · (ψα(z1, yi) − ψ(z1, yi)) = −Qα(z1, yi) · �(z1, yi) (11)

(notice the relative sign). We may summarize the above observations as follows.

Proposition 1. The ‘generalized Frobenius determinant’ arising in genus g = 1 from the
four-point function 〈b(z1)b(z2)c(y1)c(y2)〉 in the limit z2 → z1 is given by

σ(α)
σ (2z1 − y1 − y2 + α)σ(y1 − y2)

σ (z1 − y1)2σ(z1 − y2)2
=

∣∣∣∣
σ(z1−y1+α)
σ(z1−y1)

σ (z1−y2+α)
σ(z1−y2)

σ (z1−y1+α)
σ(z1−y1)

· �(z1, y1)
σ(z1−y2+α)
σ(z1−y2)

· �(z1, y2)

∣∣∣∣ .
Considering furthermore the limit y2 → y1, we obtain

σ(α)
σ (2z1 − 2y1 + α)

σ(z1 − y1)4
=

∣∣∣∣
σ(z1−y1+α)
σ(z1−y1)

σ (z1−y1+α)
σ(z1−y1)

· �
σ(z1−y1+α)
σ(z1−y1)

· � σ(z1−y1+α)
σ(z1−y1)

· [�2 − Dy�]

∣∣∣∣
where we have suppressed the argument (z1, y1) of �.

Some remarks are in order. It is now straightforward to generalize this to the case of 2N -
point functions, as long as we consider only fermions of at most double charge. For a general
2N -point function 〈∏N

i=1 b(zi)
∏N

i=1 c(yi)〉 the left-hand side of the analogous Frobenius
identity is again easy to manipulate; on the right-hand side (i.e. the determinant) we have
at worst the case where two derivatives have to be taken (one expansion in a z-variable and one
expansion in a y-variable). This is exactly the case we considered above. Thus, it is possible
(and straightforward, although a little tedious) to write down the corresponding ‘generalized
Frobenius determinant’ following from a 2N -point function, using the above formulas and
the combinatorial structure given in [3]. It is of course possible to proceed formally (as
in (7) and (8)) and consider the case of higher charged particles, involving higher and higher
derivatives of the function Qα—about which less and less seems to be known. This is in sharp
contrast to the plane case (g = 0) considered in [3], where it is essential that ( 1

x
)(n) ∝ 1

xn+1 .
Note that we may write the first equation of the proposition with the help of the addition

theorem (example 2 on p 451 in [8]),

σ ′

σ
(u + v) = σ ′

σ
(u) +

σ ′

σ
(v) +

1

2

℘ ′(u) − ℘ ′(v)
℘ (u) − ℘(v)︸ ︷︷ ︸

=:S(u,v)

in the following form:

σ(α)σ (2z1 − y1 − y2 + α)σ(y1 − y2)

σ (z1 − y1)2σ(z1 − y2)2
= 1

2

∣∣∣∣
σ(z1−y1+α)
σ(z1−y1)

σ (z1−y2+α)
σ(z1−y2)

σ (z1−y1+α)
σ(z1−y1)

S(z1, y1)
σ(z1−y2+α)
σ(z1−y2)

S(z1, y2)

∣∣∣∣ .
Let us check that this reduces to (2) in the case where all variables are close together, i.e.

to the case N = 2 of [2, 3]. This has to be expected, since the particles should no longer feel
the global (nontrivial) topology. Because of σ(u) ∼ u for small u the left-hand side is given
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roughly by σ(α)2(y1−y2)

(z1−y1)2(z1−y2)2 , which is −σ(α)2 times the left-hand side of (2). Since ℘(u) ∼ 1
u2 ,

hence ℘ ′(u) ∼ − 2
u3 , we find for the right-hand side

∼ 1

2

∣∣∣∣
σ(α)

z1−y1

σ(α)

z1−y2

− 2σ(α)
(z1−y1)2 − 2σ(α)

(z1−y2)2

∣∣∣∣ = −σ(α)2

∣∣∣∣
1

z1−y1

1
z1−y2

1
(z1−y1)2

1
(z1−y2)2

∣∣∣∣
which is nothing but the right-hand side of (2) mulitplied by −σ(α)2. Thus, in this ‘limit’
we obtain indeed the generalized Cauchy identity (2). Similarly, the second equation of
proposition 1 ‘reduces’ to (3).

In the case g � 2 we have to perform the same steps: setting z2 = z1 + ε and expanding
in ε (and setting y2 = y1 + δ later); for these calculations compare also [10]. Let us again
consider the case N = 2. The limits for the left-hand side of (4) are again very easy to
determine. In analogy to the above we expand the Szegö kernel for z2 = z1 + ε → z1 formally
as Sα(z2, yi) = Sα(z1, yi)+ ε ·DzSα(z1, yi)+ O(ε2); here we have denoted the derivative with
respect to the first argument by Dz (the derivative with respect to the second argument will be
denoted by Dy). Manipulating the right-hand side as in the case of g = 1 we obtain in the
limit z2 → z1

ϑ[α](2z1 − y1 − y2)E(y2, y1)

ϑ[α](0)E(z1, y1)2E(z1, y2)2
=

∣∣∣∣ Sα(z1, y1) Sα(z1, y2)

DzSα(z1, y1) DzSα(z1, y2)

∣∣∣∣ . (12)

Moreover, letting y2 → y1 yields

− ϑ[α](2z1 − 2y1)

ϑ[α](0)E(z1, y1)4
=

∣∣∣∣ Sα(z1, y1) DySα(z1, y1)

DzSα(z1, y1) DyDzSα(z1, y1)

∣∣∣∣ . (13)

As in the case g = 1 it is again possible to proceed formally and consider the coalescence
of more than two fields, involving higher derivatives such as Dn1

z D
n2
y Sα(zi, yk). Explicit

expressions for these derivatives seem to exist only for n1 +n2 � 2, cf [9,10]. Let us introduce
the following functions in analogy to (9):

φx,α(z1, yi) := Dxϑ[α](z1 − yi)

ϑ[α](z1 − yi)
φx(z1, yi) := DxE(z1, yi)

E(z1, yi)
&x := φx,α − φx

(14)

where x stands for z or y. Using these functions and the explicit form of the Szegö kernel
given in section 2, we obtain in analogy to (10) and (11)

DzSα(z1, yi) = Sα(z1, yi) · (φz,α(z1, yi) − φz(z1, yi)) = Sα(z1, yi) · &z(z1, yi)

DySα(z1, yi) = Sα(z1, yi) · (φy,α(z1, yi) − φy(z1, yi)) = Sα(z1, yi) · &y(z1, yi).

Although the Szegö kernel is antisymmetric in the arguments z, y (we have chosen α to be
an even theta-characteristic) it is not a function of the difference z − y, so we do not obtain
DySα(z1, y1) = −DzSα(z1, y1), in contrast to the case of genus one (see (10) and (11)). Thus,
we have in close analogy to proposition 1 the following.

Proposition 2. The ‘generalized Fay determinant’ arising in genus g � 2 from the four-point
function 〈b(z1)b(z2)c(y1)c(y2)〉 in the limit z2 → z1 is given by

ϑ[α](2z1 − y1 − y2)E(y2, y1)

ϑ[α](0)E(z1, y1)2E(z1, y2)2
=

∣∣∣∣ Sα(z1, y1) Sα(z1, y2)

Sα(z1, y1) · &z(z1, y1) Sα(z1, y2) · &z(z1, y2)

∣∣∣∣ .
Considering furthermore the limit y2 → y1 yields

ϑ[α](2z1 − 2y1)

ϑ[α](0)E(z1, y1)4
= −

∣∣∣∣ Sα(z1, y1) Sα(z1, y1) · &y

Sα(z1, y1) · &z Sα(z1, y1) · [&y&z + Dy&z]

∣∣∣∣
where we have again suppressed the argument (z1, y1) of &x .
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The second equation differs slightly from the second equation of proposition 1; if we had
&y = −&z ≡ −&, then there would be a perfect analogy. Since Dy&z = Dz&y the order
of the coalescing particles is arbitrary. Note that we can again generalize this result at once
to the case of 2N -point functions, as long as we consider only doubly charged fermions. It is
again possible to check that the first equation (second equation) ‘reduces’ to (2) ((3)) when all
variables come close together.

Associating with the field b (c) the charge q = 1 (q = −1), we can write 〈b(z)c(w)〉 ≡
〈b(x1)c(x2)〉 = ϑ[α](x1−x2)

ϑ[α](0)E(x1,x2)
= ϑ[α](q1x1+q2x2)

ϑ[α](0) Eq1q2(x1, x2), where qi is the charge of the field
sitting in xi . Similarly, we can write the four-point function as

〈b(x1)b(x2)c(x3)c(x4)〉 = ϑ[α](
∑4

i=1 qixi)

ϑ[α](0)

∏
1�i<j�4

Eqiqj (xi, xj ) (15)

where qi = ±1. The Abelian bosonization [5, 11] shows that b(xi) (c(xj )) corresponds to
the chiral vertex V+1(xi) (V−1(xj )), where Vq(z) = : eiqφ(z): for q ∈ Z and φ is a circle-
valued bosonic scalar field with action S ∼ ∫

�g
∂φ∂̄φ d(vol). We may thus write the left-

hand side of (15) simply as 〈∏4
i=1 Vqi (xi)〉. The operator product expansion b(z)b(w) =

b(z)b(z) + (w − z)b(z)∂b(z) + O((w − z)2) yields that

B(z) := lim
w→z

b(z)b(w)

z − w
= −b(z)∂b(z) (16)

and similarly for C(w). As in the case of g = 0 we have the correspondence B(z) ↔ V+2(z)

and C(w) ↔ V−2(w). The left-hand side of the second equation of proposition 2 is thus given
by 〈B(z1)C(y1)〉 = 〈V+2(z1)V−2(y1)〉, or, in the more familiar notation of (15), by

〈B(x1)C(x2)〉 = 〈Vq̃1(x1)Vq̃2(x2)〉 = ϑ[α](
∑2

i=1 q̃ixi)

ϑ[α](0)
Eq̃1q̃2(x1, x2)

where q̃1 = q1 + q2 = 2 and q̃2 = q3 + q4 = −2. Thus, the proposition shows that one can
express the correlation functions involving higher charged vertices as determinants of vertices
with lower charges (recall thatSα(z1, y1) = 〈V+1(z1)V−1(y1)〉). Of course, this can be extended
to general 2N -point functions. Note that the neutrality condition

∑2N
i=1 qi = 0 will always be

satisfied.
The formula (16) shows that the fields B(z) (C(w)) live on the first infinitesimal

neighbourhood of the corresponding diagonal (we take a derivative); as the formulas for the
plane case (i.e., g = 0) in [2] show, the fields of charge n involve derivatives up to order n, so
they live on the nth infinitesimal neighbourhood.

4. Discussion

We have seen that it is possible to consider explicitly the case of coalescing fermions on
Riemann surfaces of genus g � 1 in a straightforward fashion, as long as at most two of them
flow together. This is only a first step, but for considering more general situations one has to
have detailed control over derivatives of prime forms and theta-functions. The fields b and
c are sections of a line bundle over the Riemann surface �g . In the intrinsic interpretation
the current j (z) = − : b(z)c(z): is a section of a line bundle over the first infinitesimal
neighbourhood of the diagonal in �g × �g , cf [12]. Considering correlation functions with
insertions of currents yields various corollaries to Fay’s trisecant identity [12]. One may hope
that the intrinsic interpretation of the limits considered above (and the more general ones with
more than two fields flowing together) yields some new identities.
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The generalized Cauchy determinants were used in [2, 3] to consider the (asymmetric)
Coulomb gas in the complex plane; for a discussion of the Coulomb gas see [13]. Since the
Coulomb gas is studied on Riemann surfaces as well (see e.g. [14, 15]), one should be able to
transfer some of the conclusions of [2, 3] about the asymmetric Coulomb gas to higher-genus
surfaces. In particular, this might yield some new insights into the quantum Hall effect on
Riemann surfaces; cf [16, 17].

As stressed in [2] (and indicated above), one can consider the generalized Cauchy
determinants as being associated with a kind of generalized bosonization. A general framework
for bosonization in higher genus is given in [18] (see also [5,11]); we expect that the generalized
Frobenius (Fay) determinants will appear in concrete models for the analogous generalized
bosonizations in higher genus.
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